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Simulation of Deep Penetration Welding of Stainless 
Steel Using Geometric Constraints Based on 

Experimental Information 
S.G. Lambrakos, E.A. Metzbower, J. MilewskL G. Lewis, R. Dixon, and D. Korzekwa 

Results of a numerical simulation of deep penetration welding of 304 stainless steel are presented. This 
numerical model calculates the temperature and fluid velocity fields in a three-dimensional workpiece 
undergoing deep-penetration electron beam welding. The deposition of power from the beam and energy 
outflow at the model-system boundaries is effected by means of time-dependent boundary conditions on 
the equations of energy and momentum transfer. The vapor-liquid interface defining the keyhole is rep- 
resented by a surface whose temperature is that of vaporization for the steel. On this surface, are specified 
boundary conditions for the momentum transfer equations such that the component of the velocity nor- 
mal to the keyhole vapor-liquid interface is zero. In addition, this study introduces two new numerical 
procedures. These procedures are based on the inclusion of experimental information concerning beam 
spot size and weld pool geometry into the model system via constraints and the deduction of effective key- 
hole shape via an inverse mapping scheme. 
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1. Introduction 

ANOTHER report (Ref l)  introduced a numerical model for 
calculating structures that can occur in deep penetration weld- 
ing processes, i.e., laser or electron beam. That report describes 
the general features of this numerical model, i.e., the underly- 
ing physical model and the associated numerical methods. In 
addition Ref 1 gives a qualitative case study of the general in- 
fluence of keyhole stirring on the melt pool and a general out- 
line of those features of this model permitting its extension to 
relatively more quantitative analysis. This report describes the 
calculation of weld pool structures for deep penetration weld- 
ing of 304 stainless steel. The physical approximations em- 
ployed in this particular case study result from adopting the 
physical properties of 304 stainless steel as a function of tem- 
perature and from adjusting this model to include experimental 
information resulting from an analysis of specific cases of elec- 
tron beam welding of 304 stainless steel. The Boussinesq ap- 
proximation (Ref 2,3) is applied to the system of transport 
equations underlying this numerical model. This follows be- 
cause a representation of the physical properties via a func- 
tional dependence on temperature implies certain specific 
assumptions regarding the timescale for local equilibration be- 
tween fluid volume elements. 

The modeling of deep penetration welding processes differs 
from the modeling of other welding processes in that the over- 
all process consists of processes occurring at different tempera- 
tures within a range of temperatures between room temperature 
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and the temperature of vaporization, T G. In principle, this range 
of temperatures can even be extended above T G if one includes 
processes occurring inside the keyhole where temperatures 
above T G can occur. From the standpoint of numerical model- 
ing, this implies that the problem has several aspects. 

First, with respect to numerical methods for solving differ- 
ential equations, the coupling between regimes defined by 
processes whose characteristic timescales are different means 
that the system is not only stiff but that stiffness can occur at dif- 
ferent regions of the overall system. 

Second, the physical character of the transport, both of en- 
ergy and of momentum, is not the same for all the different re- 
gions making up the overall system. The upstream influence on 
structures increases with the degree of proximity to the key- 
hole. 

Third, there are regions within the system at which either 
exothermic or endothermic reactions occur. These regions 
could be characterized by inherently unsteady or fine-scale 
structures. How to accurately represent the average influence 
of these structures in a steady-state sense poses an additional 
problem. 

Reference 1 presents simulations for the purpose of a gen- 
eral qualitative analysis of structures occurring in deep pene- 
tration welding. This study represents a first stage toward 
effecting a quantitative analysis of deep penetration welding 
structures in a specific system, i.e., 304 stainless steel, for the 
eventual purpose of quantitative prediction of thermal histories 
of  elements within the workpiece. In light of the goal of quanti- 
tative prediction, a model that combines processes occurring 
within the keyhole with diffusive and convective energy trans- 
fer in the liquid and solid, although feasible, is not optimal with 
respect to convenience or efficiency. This observation is com- 
pletely natural because the characteristic timescales of struc- 
tures in the neighborhood of the keyhole vapor-liquid boundary 
and of structures in the neighborhood of the liquid-solid bound- 
ary are sufficiently dissimilar to necessitate a partitioning of the 
problem. The dynamics of keyhole stability, development, and 
geometry are therefore a separate problem whose results can be 
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hess in this development, however, some of those features are 
reviewed. 

The model system to be specified is that of unsteady energy 
and momentum transport in a coordinate system that is fixed in 
the reference frame of a moving electron beam energy source. 
Figure 1 shows a schematic of the model system. The bounda- 
ries of the model system are defined, at each timestep, by the 
sides of a finite-sized rectangular segment, whose physical 
edges are far from the beam spot, and by the temperature of va- 
porization isotherm, which defines the boundary of the key- 
hole. 

The system is assumed to be symmetric about the xz-face at 
y --- 0 (see Fig. 1); thus, only one half the system is modeled. 
The equations governing the model system are: 

c3T 
0T + V �9 [UT] + - - -  K(T)V2T(x, t) + V. q 
3t 8uvB bali- (Eq 1 ) 

where 

k(73 
~c(73 - (Eq 2) o(T)Cp(T) 

input into a model of the liquid-solid domain as either boundary 
conditions or constraints on the system equations. Therefore 
this study also represents a first step toward a partitioning of the 
overall problem into separate problems that can be interfaced. 

In addition to presenting a case study simulation of deep 
penetration welding of 304 stainless steel, this study introduces 
two new approaches, which are general and should contribute 
significantly to effecting a quantitative analysis of deep pene- 
tration welding structures. These approaches are based on the 
inclusion of experimental information concerning keyhole and 
weld pool geometry into the model system via constraints and 
the deduction of "effective" keyhole shape via an inverse map- 
ping procedure. The procedure for imposing constraints has an 
added feature that it tends to compensate for either the unavail- 
ability of materials properties (see discussion in Ref4) at tem- 
peratures close to the temperature of vaporization or gaps in 
knowledge concerning aspects of keyhole shape, or for that 
matter, general character. The inverse mapping procedure is 
similar to the direct-problem approach, which is first construct- 
ing a model based on one's knowledge and assumptions about 
the underlying physical processes, inputting into the model 
system the best available physical constants specifying the ma- 
terial properties, and finally, comparing the results of simula- 
tion and experiment. Our inverse-mapping approach adjusts 
portions of the keyhole surface according to physically consis- 
tent mappings of experimental information concerning the 
shape of the solidification boundary. 

2. Physical Model of Deep-Penetration Welding of 
304 Stainless Steel 

The general features of this numerical model are an exten- 
sion of those described in Ref 1. For the purpose of complete- 

and 

V- q = V. % +  V. qs + V. ql (Eq 3) 

The term V - qh represents energy transfer into the system re- 
sulting from the beam source. The term V. qs represents energy 
released due to solidification, and V - q/is energy absorbed at 
the onset of liquefaction. 

+ V �9 ( U U j )  + ~ljVB 
Ot OJ 9 

1 0 P  
= v(73v2us 

0(73 &'9 
~)3j~3(T)g(T - TM) (Eq 4) 

where 

v(T) - Iu(T) 
p(T) 

(Eq 5) 

V. U = 0 (Eq 6) 

where j = l, 2, 3 denotes the Cartesian coordinates x, y, and z, 
respectively. The remaining quantities are defined as follows. 
The quantity U = (Up U 2, U3) = (u, v, w) is the velocity field at 
a given point, and x = (x 1, x 2, x3) = (x, y, z) is the Cartesian co- 
ordinate of that point. The quantity V B is the speed of the beam 
moving in the direction of increasing x, and ~3ij is the Kronecker 
delta function. The quantity P is the pressure at a given point, 
and T is the temperature. The temperature-dependent density 
p(73 is (Ref 5): 
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p(T) = (7984 .0 -  0 .2651T-  1.158 x 10-4T 2) 

[ l - Us(T- TM)] + (7551.0 - 0.1117T 

- 1.506 x 10 4T2)us(T- TM) (Eq 7) 

The thermal expansivity [3(T) is: 

~(T) = 2.168 x 10 -5 + 5.798 x 10-I~ 

+ 2.572 x 10-12T 2 (Eq 8) 

The quantity It(T) is the coefficient of viscosity as a function of 
temperature and is approximated by: 

It(T) = ~ts[1 - us(T-  TM) ] + Itl (Eq 9) 

where 

Itl(T) = 10-3.595810-(2385.2/T) (Eq 10) 

Its is a very large number representing an infinite viscosity in a 
solid, and Us(T- T M) is a unit step function such that: 

us(T-  TM) = 0 (Eq 1 la) 

if T < T M. Otherwise, 

us(T-  T M) = 1 (Eq 1 lb) 

The units of gl are kg/(m-s). The conductivity k(T) is: 

k(T) = (8.116 + 0.016187)[1 - Us(T- TM) ] 

+ (12,29 + 3.248 x IO-3T)us(T-TM) (Eq 12) 

The units of k(T) are in W/(m. K). The heat capacity Cp(T) is: 

Cp(T) = (433.506 + 0.124477T)[1 - us(T-  TM)] 

+ (734.022)us(T- TM) (Eq 13) 

The units of Cp(T) are in J/(kg �9 K). The thermal coefficient 
of surface tension is: 

O7 
OT - -AJ;(x, y) (Eq 14) 

where A n is a constant and f~(x, y) is a two-dimensional modu- 
lation function whose form is specified according to experi- 
mental information about melt pool shape. The quantity given 
by Eq 14, which is formally equivalent to the coefficient of sur- 
face tension, is for lumping the influence of phenomena in the 
vicinity of the keyhole and at the surface, which are not in- 
cluded explicity in this model. Further discussion concerning 
this quantity is given below. Note, however, that this function 
provides a means for including experimentally obtained infor- 
mation concerning the geometry of the melt pool. 

The source term V �9 qs is specified according to the integral 
condition: 

f+6t V �9 qsdt = p(T)AfusH~(T - TM) (Eq 15) 
g 

where 

f TM 5s(T - TM)dT = 1 
T M - ,AT 

(Eq 16) 

The sink term V. ql is specified according to the integral condi- 
tion: 

+At V . q f l t  = - o ( T ) A f u s H S I ( T -  TM) (Eq 17) 
t 

where 

f TM+ ÀT 8l(T - TM)dT =1 (Eq 18) 
T M 

For Eq 16 and 18, AT is defined by: 

AfusH 
A T - -  (Eq 19) 

Cp(TM) 

where the heat of fusion Afu,4t/= 2.47 x 105 J/kg. In the present 
calculation, V �9 ql is assigned a value of zero. This approxima- 
tion is based on the assumption of rapid onset of liquefaction 
and subsequent vaporization as is the case for these calcula- 
tions. 

Energy transfer into the system resulting from the beam 
source is effected via two procedures, which are equivalent. 
One procedure is to effect a temperature change ATg in the 
neighborhood of the keyhole boundary according to the inte- 
gral condition: 

+At V . qbdt = 9(T)CpATg Sb(T - TG) (Eq 20) 
t 

where 

I Tc 6b(T  - TG)dT=I 
A T ,  

Ta 

(Eq 21) 

The other procedure is to move the keyhole boundary 
through the system at a specified rate. Note that this procedure 
is equivalent to that defined by Eq 20 and 21. 

In Eq 1 and 3, the influence of convection is represented by 
two terms; i.e., a term containing U and one containing V 8. This 
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representation follows because the flow field associated with 
the convection terms in both the energy and momentum trans- 
port equations, i.e., Eq 1 and 2, is defined with respect to an ori- 
gin that is fixed in the workpiece. The component of the flow 
field parallel to the direction of the motion of the beam is there- 
fore p(u + VB); however, the dependent variables of the mo- 
mentum transfer equations, (u, v, w), are the velocities relative 
to an origin that is stationary with respect to the beam. The 
weighting coefficients for the discretization of Eq 2 as defined 
by the SIMPLE algorithm (Ref 6) are modified to take into ac- 
count this representation. In addition, although the weighting 
coefficients that are defined by SIMPLE are adopted here, the 
numerical procedure employed is different and is structured for 
this problem in particular. 

At the keyhole liquid-vapor interface, the boundary condi- 
tions on the momentum transfer equations are those of a no-slip 
boundary. That is, the component of the velocity, in the refer- 
ence frame of the workpiece, normal to the interface is zero: 

U- ~ + V B �9 ~ = 0 (Eq22) 

A .  
where n is the unit normal to the keyhole liquid-vapor boundary 
and V B is the velocity of the beam with respect to the workpiece 
and is in the x-direction. Another boundary on the molten re- 
gion is defined by the solid-liquid interface. The boundary con- 
dition on this boundary is specified in our model according to: 

U/= - 81.iV B (Eq 23) 

i f T < T  M. 
Note that according to this specification, the set of all nodes 

having temperature values less than T M includes both boundary 
and exterior points of the melt pool. 

The effects of surface tension, energy transfer through the 
system boundaries of the workpiece, and energy transfer from 
the beam source enter the model via boundary conditions on the 
energy and momentum transport equations. The numerical pro- 
cedure for effecting energy transfer through the system 
boundaries of the workpiece is discussed in the next section. 
Note again that the system boundaries do not correspond to the 
physical edge of the workpiece. The influence of surface ten- 
sion and energy deposition from the beam onto the keyhole liq- 
uid-vapor boundary is not considered explicitly in this 
calculation. Remember that in Ref 1, the keyhole vapor-liquid 
interface was a time-dependent quantity, which evolved to a 
steady state along with the rest of the system. In that scheme, 
energy deposition from the beam is coupled into the system via 
an exponential penetration, which is physically consistent with 
energy deposition from a laser beam source. This approach is 
not followed in this study. Instead, an approach that facilitates 
the inclusion of experimental information concerning beam 
power and geometry is adopted. In addition, in Ref 1 calcula- 
tions, the top boundary of the model system is considered to 
correspond to the physical edge of the workpiece. As a result, 
the coefficient of surface tension adopted in that calculation is 
meant to represent an approximation of that for a prototype 
iron-steel system. In this study, the top boundary of the system, 
in the liquid state, does not correspond to the physical top sur- 

face of the workpiece. Therefore, the coefficient of surface ten- 
sion adopted in this calculation, although formally equivalent 
to a coefficient of surface tension, serves as a geometric-con- 
straint parameter whose physical significance is that it facili- 
tates the explicit inclusion of experimental information. 

3. Boundary Conditions on Faces 
of Model System 

This section specifies the boundary conditions on each face 
of the sample (see Fig. l) with respect to temperature and ve- 
locity. 

Boundary conditions on the xy-face at z = 0 are: 

3T 
- 0 (Eq 24a) 

3z 

3u 3 T OT 
~t 

3z - 3T 3x 

and 

~t 

if 

3v 37 3T 

3z 3T 3y 

T M < T <_ T G (Eq 24b) 

u = - V  B 

and 

v=O 

otherwise, and: 

(Eq 24c) 

w = 0 (Eq 24d) 

The quantity Oy/OT is the thermal coefficient of surface tension. 
Boundary conditions on the xy-face at z = L_ and at time t + 

At are: 

I T(x, y, L_, t + At) = max T A, T(x, y, L: - 2Al, t)J (Eq 25a) 

3u 37 3T 

la3z - 3T 3x 

and 
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3v 0y aT 

g~-~z = 0T Oy 

if 

TM<T<_T G 

u = -  V B 

and 

V = 0 

otherwise, and 

w = 0  

Boundary conditions on the xz-face at y= 0 are: 

(Eq 25b) 

(Eq 25c) 

(Eq 25d) 

3T 
- 0 (Eq 26a) 

Oy 

au aw 
- 0, v = 0, --C- = 0 (Eq 26b) 

3y oy 

Boundary conditions on the xz-face at y = Ly and at time t + 
At are: 

T(x, Ly - AI, z, t) 2 ] 
T(x, Ly, z, t + At) = max T A, ~ ~ l [ z T ~ J  

u = - V s ,  v=O,w=O 

Boundary conditions on the yz-face at x = 0 and at time t + At 
are; 

(Eq 27a) 
T(kl, y ,z ,  t_)2__] 

T(0, y, z, t + At) = max T A, T(2A/, y, z, t)J 

where x = 0 does not coincide with the physical edge of the 
workpiece. 

(Eq 27b) U = - -  VB, V = 0 ,  W = 0  

Boundary conditions on the yz-face at x = L x and at time t + 
At are: 

[ T(L x - AI, y, z, t) 2 ] 
T(L x, y ,z , t+  At)=max IT A, , tLx_za, ,  y "r'J~i--[-z-7" | 

[ . 
(Eq 28a) 

(Eq 28b) u = - V B ,  v=O,w=O 

Note that the boundary conditions on the system boundaries 
at face xz at y = Ly, face yz at x = 0, and face yz at x = L x are physi- 
cally consistent since in these calculations a solid state occurs 
in the neighborhood of these boundaries. That is only if the 
temperature at grid points in the neighborhood of these bounda- 
ries is less than T M so that u = - V  B. 

. Convenient Numerical Procedure for 
Calculating a Steady-State Solution via 
Successive Approximate Unsteady Solutions 

Given a velocity field ~ ,  (j = 1, 2, 3) corresponding to time 
t and a pressure field P, then the velocity at time t + At is: 

1 [ L  p(A/) 3 OPp [ 
Uj, p= WlT[?akUj, k+ At Uy, p -  24  +Bj (Eq 29) 

where 

6 

P(A/)3 (Eq 30) 
Wp= ~ ak + At 

k = l  

j = 1, 2, 3 and (AI) 3 is the volume of each discrete volume ele- 
ment. In general, find P such that: 

3 
avj, e 

E =o 
j = l  

(Eq 31) 

Given that pe is an estimate of the pressure, it follows that 
the corresponding velocity field Uj ~,p calculated according to 
Eq 29 is such that: 

3 0 U ] i p  
ax~ , o  

j = l  

(Eq 32) 

The problem is to determine the pressure field P* which when 
added to pe results in a velocity field that satisfies the continu- 
ity equation Eq 32. Adding a pressure field P* to pe is equiva- 
lent to adding a velocity field U)~ p to U~, p given by: 

1 3P* 
c P 

ur Wp ax i (Eq 33) 

such that: 

3 e 

= 0 (Eq 34) 
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At this point, a convenient (and intermediate) relaxation co- 
efficient, ~,~, is introduced. Accordingly, a pressure correction, 

' is defined such that: Pp, 

(Eq 35) 

and therefore: 

1 3P c 
U)I p - P (Eq 36) 

and adding a pressure field P~ is equivalent to adding a velocity 
field US, p to uS, p. Given pe, a derivation of an expression for pc 
is as follows. Substituting U~,p given by Eq 36 into 34: 

3 OUep_j 1 3 02pc 

j = l  j 

(Eq 37) 

Next note that ifAxj = Al for j  = 1,2, 3, then: 

3 32P~ lim 1 I i  PPl = P ~ - 6  c (Eq38) 
Z ~X 2 A/..._) 0 A/2 = 1 J 

j = l  

In addition, a relaxation coefficient, o~ R, is defined such that: 

(al)  20~ k 
~R - 6 (Eq 39) 

It follows from Eq 35, 38, and 39 that: 

6 3 "~),~"~ 
1 

P; ~ -d ~-~ P~ - O~R Z 3X i 
k=l  j = l  

(Eq 40) 

for the given set of coefficients a k, which are iterated in time. 
Our implementation of the above procedure for this calcula- 

tion is defined by the following sequence of operations and is 
based relaxation via inertia, i.e., the timestep is used as a relaxa- 
tion parameter. Let P~ be the pressure field corresponding to 
time t. One then calculates a velocity field Up for the pressure 
fieldo P~ and velocity, field U~ according" to Eq 29. Note the use 
of P ,  for the estimated pressure field P~, defined above Given 
the velocity field U~,, one then calculates the correction field 
P~, according to Eq 40. The pressure field corresponding to the 
current timestep is calculated according to: 

Pp(t + At) = P~ + P~ (Eq 41) 

5. Procedure for Imposing Constraints According 
to Experimental Information 

In modeling the welding process at and in the vicinity of the 
keyhole, one is confronted with several problems. To begin 
with, the top surface of the melt pool is not flat, but rather ex- 
tends above the top surface of the workpiece. An accurate rep- 
resentation of this structure is, in principle, very difficult. In 
order to accurately model the process that causes the expansion 
and flow of liquid out of the keyhole and onto the surface, one 
would have to know many details associated with the process 
occurring inside the keyhole. In addition, in order to model the 
flow of liquid along the nonflat beaded surface of the melt pool, 
one would have to know the geometry of the bead in the vicin- 
ity of the keyhole and the coefficient of surface tension for the 
entire range of temperatures between T M and T c. Further, there 
may be an unavailability of material properties, especially the 
coefficient of surface tension, for the full range of temperatures 
between T M and T G. And finally, the keyhole is typically com- 
prised of inherently unsteady and sometimes turbulent struc- 
tures. 

With respect to the difficulty associated with accurately 
modeling the structures in the vicinity of the keyhole, the fol- 
lowing proposition and basis for a new approach is presented. 
Namely, that the shape of the solidification boundary of the 
melt pool that intersects the top surface of the workpiece, 
which is underneath the material extending above the top sur- 
face, is the manifestation of all the processes occurring in the 
vicinity of and in the keyhole. Thus by adopting the shape of 
this two-dimensional structure as a geometric constraint, one 
is, in principle, accurately representing the combined influence 
of structures near and at the keyhole that are characterized by 
multiple differing characteristic length and time scales. The 
significant feature of this approach is that the exact shape of the 
solidification boundary at this plane is conveniently accessible 
experimentally. In the same spirit, the beam spot size and pene- 
tration depth represent additional structure information that 
may be input via geometric constraints. 

The above approach is demonstrated by considering a case 
study involving an electron beam weldment produced by a 
beam of -3  kW power and 3 cm/s welding speed. Cross sec- 
tions for this weldment are shown in Fig. 2 and 3. In addition, 
the top surface view of a melted spot produced by turning the 
beam on for a short period of time is shown in Fig. 4. The geo- 
metric information obtained from an analysis of these cross 
sections and the observed beam spot size is used for the calcu- 
lation shown in Fig. 5. For this calculation, the length of the 
keyhole is fixed to that of the measured penetration depth, and 
the radius of the keyhole is fixed to that of the measured spot 
size at the surface. A noticeable feature of the temperature con- 
tour corresponding to T M is its ragged character. This is a dis- 
creteness effect due to the instantaneous release of energy due 
to solidification at a grid point whose temperature decreases 
below TM; i.e., Eq 15 and 16. This effect can be smoothed out 
by adopting a finer grid and assuming implicitly some approxi- 
mate rate for energy release. This issue, however, is not a sub- 
ject of the present study. 

The procedure for imposing the melt pool constraint at the 
top surface of the workpiece is effected by adjusting the values 
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Fig. 3 Surface showing extent of melt pool on xy-plane corre- 
sponding to top surface of workpiece (z = 0), which is revealed 
by removing material extending above the surface. For this sys- 
tem, V B = 3 cm/s, and the power into the workpiece is -3 kW. 
The length and width, respectively, of this structure are 3.75 mm 
and 1.6 mm (0.148 in. and 0.063 in.) 

Fig. 2 Transverse cross section (i.e., yz-plane) of weld showing 
penetration depth and transverse extent of solidified melt pool. 
For this system, V B = 3 cm/s, and the power into workpiece is ~3 
kW. The depth of penetration is 7.75 mm (0.305 in.) 

Fig. 4 Top surface view of a melted spot produced by turning 
beam on for ~0.25 s. The diameter of this spot is 0.232 mm 
(0.009 in.) and is made at sharp focus of the beam at the metal 
surface 

of the surface-tension "like" coefficient defined by Eq 14. Note 
that although this coefficient has a formal similarity to that of a 
coefficient of surface tension, it no longer has this physical 
meaning. In addition, because the function of Eq 14 is for 
"weighting" the velocity field at the surface plane so as to effect 
the geometric constraint on the melt pool, the coefficient A n 
may, in principle, be multiplied by a modulating function ofx  
and y. For the calculation shown in Fig. 5 (a), the value o f A  n has 
been adjusted according to the measured length of melt pool 
feature shown at the surface plane along x (see Fig. 3), An ad- 
justment with respect to the width of the melt pool, or for that 
matter its entire shape, is effected by multiplying A n by an ap- 
propriate modulating (or shaping) function, i.e., f~(x, y) in Eq 
14. For the calculation shown in Fig. 5(b),fs(X, y) = 1 for all x 
and y. The calculation in Fig. 5 assumes that some type of esti- 

mate of the steady-state weld pool length can be obtained from 
experiment. Perhaps, however, this type of information is very 
difficult to obtain. It may be easier to obtain geometric informa- 
tion about the width, e.g., Fig. 2, and shape of the leading edge 
of the melt pool, e.g., Fig. 3. For the calculation shown in Fig. 
6, the leading edge and width of the melt pool have been con- 
strained approximately according to the observed width and 
shape of the melt pool shown in Fig. 2 and 3 using a modulating 
func t ion  fs(X, y). 

The procedure for implementing constraints described in 
this section follows the direct problem approach. Further infor- 
mation concerning the shape of the keyhole below the top sur- 
face of the workpiece is input into the model system via the 
inverse mapping approach described in the next section. 
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Fig. 5 Steady-state of model system for V B = 3 cm/s and A n = 4 

x 10 -6 where n = 0 (see Eq 14). The calculated power into the 
workpiece is -1.5 kW. Shape of keyhole and melt pool partially 
constrained according to experimental information as that 
shown in Fig. 2, 3, and 4. The temperature isotherms are as- 
signed as follows: a is 35 ~ b is 335 ~ c is 635 ~ d is 935 
~ e is 1235 ~ andfis T M. In cases where isotherms are not la- 
beled, temperatures are assigned as follows. The outermost iso- 
therm is at 35 ~ Isotherms that are successively closer to the 
keyhole are at temperatures in the sequence 335 ~ 635 ~ 935 
~ 1235 ~ T M, 1735 ~ 2035 ~ 2335 ~ and T G 

80 

6. Inverse Mapping Procedure for Specifying 
Effective Shape of Keyhole 

The procedure described in the above section uses the for- 
malism of surface tension driven flow for imposing constraints 
associated with the melt pool geometry at the plane corre- 
sponding to the top surface of the workpiece. In that procedure, 
the geometry of the keyhole, i.e., the steady-state isotherm for 
the temperature of vaporization, is assumed given, and the sur- 
face tension coefficient is adopted as an adjustable parameter. 
This section describes a procedure for imposing constraints ac- 
cording to any available information concerning the shape of 
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Fig. 6 Steady-state configuration of melt pool for model system 
where melt pool is partially constrained according to experimen- 
tal information about width and steady-state shape of leading 
edge of melt pool. The parameter values are the same as for the 
calculation shown in Fig. 5 

the melt pool below the surface of the workpiece. The shape of 
the keyhole below the surface is adopted as an adjustable pa- 
rameter. In this procedure, the two-dimensional shape of the 
melt pool at the top surface of the workpiece is assumed given. 

With respect to the difficulties discussed in the previous sec- 
tion associated with modeling accurately structures occurring 
in the vicinity of the keyhole, and in this case underneath the 
top surface of the workpiece, the following proposition and ba- 
sis for another approach is presented. Namely that the three-di- 
mensional surface of the solidification boundary of the melt 
pool below the surface of the workpiece is the manifestation of 
all the processes Occurring in the vicinity of the keyhole as a 
time average given that the top surface geometry is constrained 
to the final fusion zone geometry. Further, all structures occur- 
ring inside the melt pool are only strongly coupled to the iso- 
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keyhole can be mapped onto the solidification boundary. For 
this calculation, the radius of the keyhole is reduced to half its 
value beyond a certain depth (4 mm, or 0.157 in.) within the 
workpiece. This keyhole shape results in a bending of the so- 
lidification boundary, which is qualitatively the same as that 
observed in Fig. 7. 

7. Discussion 

Fig, ? A longitudinal slice of a weld parallel to the zx-plane, 
along the direction of motion of the beam relative to the work- 
piece, and passing approximately through the center of the 
beam. Solidification lines before and after welding are separated 
by a frozen keyhole. Solidification lines on the left of the key- 
hole tend to bend over while those on the right of the keyhole 
tend to be straight 

thermal surface corresponding to the temperature of vaporiza- 
tion T c. There is, therefore, a strong mapping between the 
shape of the keyhole and the shape of the melt pool below the 
surface given that the geometry of structures occurring on the 
surface is specified. In this approach, however, an inverse map- 
ping procedure is followed. Information concerning the shape 
of the solidification boundary is assumed known, and the shape 
of the keyhole is adjusted to be consistent with this shape. An 
important aspect of this procedure is that information concern- 
ing the shape of the melt pool is more readily accessible than 
that of the keyhole. 

We demonstrate the above approach by considering an ad- 
justment, or refinement, of the keyhole surface according to in- 
formation about the shape of the melt pool intersecting a 
longitudinal slice of the weld along the xz-plane passing 
through the center of the beam along the direction of motion of 
the beam relative to the workpiece. Shown in Fig. 7 is a frozen 
keyhole whose exact shape is not important for the present dis- 
cussion. The direction of beam travel is from left to right. A 
comparison of solidification lines on the left to those on the 
right shows a bending of the solidification boundary on the left 
of the keyhole. Figure 8 shows that changes in the shape of the 

The authors extended a general numerical model previously 
developed and applied in a qualitative study (Ref 1) for its ap- 
plication to a quantitative analysis of deep penetration welding 
structures. The particular extension presented here is associ- 
ated with a new approach, which uses experimental informa- 
tion concerning melt pool and keyhole geometry. Although the 
approach described here is for a quantitative analysis, the re- 
sults of calculations presented are primarily for demonstrating 
the application of this approach. Several issues must be ad- 
dressed before a quantitative analysis yielding an accurate ther- 
mal cycle function T(t, x, y, z) is undertaken. These issues are 
the focus of the current study and are as follows. 

The authors adopted the formalism of the surface tension 
coefficient for imposing geometry constraints associated with 
the shape of the melt pool at the top surface of  the workpiece. In 
these calculations, the value of this quantity is adjusted only so 
that the length, width, or steady-state shape of the leading edge 
of the melt pool is consistent with experimental measurements. 
This, however, represents only partial information concerning 
the shape of the melt pool at the top surface. In order to adjust 
the calculated melt pool at the top surface so that it is consistent 
with experimentally observed structures, one must select the 
appropriate two-dimensional modulation function fs(X, y). 
Having done this, there still remains the issue of the sensitivity 
of the calculated melt pool boundary with respect to variations 
in the gradient offs(X, y). 

The inverse mapping procedure for specifying the effective 
shape of the keyhole encompasses several issues that must be 
addressed. First, given that one has deduced from experimental 
measurements sufficient information about the three-dimen- 
sional surface corresponding to the solidification boundary, 
one must effect a tractable and convenient procedure for adjust- 
ing the effective keyhole shape so that the calculated solidifica- 
tion boundary coincides with the experimentally deduced 
surface. Next, there is the issue of sensitivity of the calculated 
solidification boundary with respect to changes in the shape of 
the keyhole surface. Keep in mind that there is an inherent stiff- 
ness that develops with respect to the coupling between ele- 
ments of the workpiece at positions progressively closer to the 
keyhole. This results from the substantial increase in magni- 
tude of the temperature gradient for positions close to the key- 
hole. This stiffness can, in principle, introduce significant 
errors in the mapping between the effective keyhole surface 
and the solidification boundary. 

There remains the issue of what can be considered appropri- 
ate geometric information. The solidification boundary con- 
sists of unsteady structures and does not achieve a fixed 
steady-state shape. However, experimental observation sug- 
gests that the solidification surface can be decomposed into two 
parts. One part, the smaller, is a time varying contribution. The 
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Fig. 8 Steady-state of model system with adjustment of keyhole 
geometry according to inverse mapping approach. That is to say, 
the shape of the effective keyhole surface is adjusted according 
to a specified shape of the liquid-solid boundary. The parameter 
values for this calculation are the same as those for the calcula- 
tion shown in Fig. 5 

larger part is a fixed surface, which maps onto a fixed keyhole 
surface corresponding to the time average of the variations in 
keyhole shape with respect to the timescale of thermal conduc- 
tion in the liquid. An accurate specification of this steady-state 
component of the solidification boundary remains an open 
question for process development. 

It is appropriate to state explicitly the goal underlying the 
development of this numerical model. Given a metallographic 
weld cross section in keyhole mode and that issues associated 

with numerical accuracy have been addressed, this model (via 
the inverse mapping approach) can, in principle, predict the 
temperature gradients around the weld pool as a function of 
time during the weld. These gradients must be known during 
solidification of the weld pool so that one may predict: elemen- 
tal loss from the weld pool by vaporization; metallurgical struc- 
ture of the weld; distortion from the weld process; and 
mechanical properties of the welded component at the weld 
based on metallurgical structure, mechanical properties, and 
stress state. 
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